## Antenna modelling

A brief introduction to 4NEC2

For<br>The Newport Amateur Radio Society

By<br>Roger - GW6HRU

## Engines:

## Background

- NEC = Numerical Electro-magnetics Code
- Written in FORTRAN in the 1970s at Lawrence Livermore National Laboratory
- The code to NEC2 (version 2) was publicly released in the 1980s and is still widely used (probably because it's free!). NEC5 can be licensed for $\$ 120$ !
- MiniNEC2/3 (version 3=1986) are an open source re-write of the NEC2 engine, with some limitations, but also with some newer features
- Programs:
- 4NEC2 is a (free) Windows program that adds a graphics UI and full variable parser to the NEC2 engine (can use NEC4, and with tweaking NEC5).
- EZNEC is a (now free) windows program with nicer graphical views, but only straight elements, no variables, and limited resizing options
- MMANA is a (basic=free/advanced=paid for) program using the MiniNEC3 engine, with a nice graphical editor, but limited expressions.
- CocoaNEC is a Mac application, similar to EZNEC


## Main NEC (and MiniNEC) limitations

- Wires are split into segments, the segments should be:
- $1 / 1000^{\text {th }}$ to $1 / 20^{\text {th }}$ of a wavelength long (more segments $=$ slower run time)
- Longer than their diameter (greater than $2 x$ diameter preferred)
- Segment intersections should:
- Have lengths within 5:1 (3:1 preferred) of their neighbours
- Not overlap more than $1 / 3$ of the neighbouring segments (acute angle limits)
- Feedpoints will be a single segment (so at least $1 / 1000^{\text {th }}$ of a wavelength long)
- Parallel wires must have similar (sometimes very similar) segmentation
- Wires near ground (Note: NEC2 only, fixed in the paid for NEC4 and NEC5)
- All wires should be least two diameters above ground
- Wires cannot touch ground

The good news: Many errors are really warnings, often the results are "close enough" for a starting point.

## Other simulation problems

- Auto segmentation options:
- Don't always give good results (checks still fail)
- Can generate lots of segments ( $2 x$ segments $=4 x$ time!)
- Modelling capacitors and inductors/traps, is difficult/limited:
- Have to define a segment, then apply modifiers
- Really only supports LCR in series or LCR in parallel
- Modelling helix, arcs and cylinders is extremely complex
- Their definition puts them at $(0,0,0)$
- Need to be moved/rotated in 3D space to where they should be
- (Not supported by EZNEC)


## NEC file commands

The NEC/MiniNEC engines are driven by a file of commands, one per line:

```
CM Comment Line
EX Excitation (feedpoint) *
FR Frequency
GA Wire Arc Specification *
GD Additional Ground Parameter
GH Helix/Spiral Specification *
GM Move/Copy segment(s) *
GN Ground Parameters
GR Generate Cylindrical Structure *
GS Scale Structure Dimensions (default is meters)
GW Wire Specification
LD Loading
SM Multiple Patch Surface *
SP Surface Patch *
SY Set variable **
' Rest of line ignored (per line comment)
* = Not supported by EZNEC ** = 4NEC2 extension
```


## What does 4NEC2 offer?

- Editing:
- Simple graphical editor
- Old/New Line based editors with syntax checking entry
- Notepad for full edits (best for copy+paste)
- Metric (meters) or imperial (feet or inches) input and display
- Allows: variables, calculations, and expressions
- Supports: Arc, helix, cylinder, and move/repeat NEC commands
- 3D viewer for antenna design
- Simple SWR sweeps, Smith charts (up to 256 frequency steps)
- Near field and Far field plots in 2D and 3D
- Multi-pass optimizer to tune SWR/gain/other


## Why use variables? (4NEC2 only)

- Variables allow:
- A common place to define things like: height, frequency, wavelengths, offsets, diameters, etc.
- Calculations/expressions avoid pre-calculated "magic" values
- Allows parameter based designs
- The optimizer can automatically adjust variables to improve SWR/FB-Gain/Gain...
- The graphical editors don't allow for this!
- !! Maths alert !!
- Is basically algebra!
- Often involves basic trigonometry (Sin/Cos/Pythagoras)!


## Variables and expressions (4nec2 only)

## The SY command defines variables:

SY name=expression 'Syntax
Expressions can also be used instead of values: Operators:

+ Add
- Subtract
* Multiply
/ Divide
^ Raise to power
Functions:

```
sin(angle) 'Sine of angle in degrees
cos(angle) 'Cosine of angle in degrees
tan(angle) 'Tangent of angle in degrees
atn(val) 'Arc tangent, returns angle in degrees
sqr(val) 'Square root
exp(val) 'Exponent (e^val)
log(val) 'Base e logarithm
log10(val) 'Base }10\mathrm{ logarithm
abs(val) 'Absolute value (maps -ve or +ve to +ve)
sgn(val) 'Return -1,0,+1 depending on sign of value
int(val) 'Rounds to nearest integer
mod(val,div) 'Modulo arithmetic (remainder after division)
```


## Simple inverted V - example



Straight wires use $X, Y, Z$ start, and $X, Y, Z$ end coordinates, so we need to calculate $X$

| SY M $=8.0$ | 'Midpoint height (in meters) |
| :---: | :---: |
| SY H=5.0 | 'Endpoint height (in meters) |
| SY F=0.08 | 'Feed point is 8cm wide |
| SY R=0.0005 | 'Wire is 1 mm in diameter $=0.5 \mathrm{~mm}$ radius |
| SY W=0.25*300/7.100 | 'Quarter wave length at 7.1 MHz |
| SY Z=M-H | 'Vertical height of wire |
| SY X=sqr( $\left.\mathrm{W}^{\wedge} 2-\mathrm{Z}^{\wedge} 2\right)$ | 'Pythagoras: $\mathrm{W}^{2}=\mathrm{X}^{2}+\mathrm{Z}^{2}=>\mathrm{X}^{2}=W^{2}-\mathrm{Z}^{2}=>\mathrm{X}=\sqrt{ }\left(\mathrm{W}^{2}-\mathrm{Z}^{2}\right)$ |
| ' Tag Segs X Y Z | Y Z Radius |
| GW 991 -F/2 0 M | F/2 0 M R 'Feed point is at top of middle pole, F/2 left, F/2 right |
| GW $1045-\mathrm{F} / 20 \mathrm{M}$ | X 0 HR 'Left span, from feed point at M to - X at H |
| GW $1145 \mathrm{~F} / 20 \mathrm{M}$ | X 0 HR 'Right span, from feed point at $M$ to X at H |

## "NEC Editor (new)" example \#1

From the previous page, we can enter the following into the editor




## Example: Vertical dipole + radials

- 3 equally spaced radials at A degrees from vertical
- Height above ground is H

$$
\text { Side view } \quad(0,0, H+Q)
$$

- $Q=1 / 4$ wavelength
- Some trigonometry:
- $C S=Q * \sin (A)$
- $\mathrm{CH}=\mathrm{Q}^{*} \cos (\mathrm{~A})$
- CX=CS* $\cos (30)$
- CY=CS* $\sin (30)$
Top view $\quad(0, \mathrm{CS}, \mathrm{H}-\mathrm{CH})$


## "NEC Editor (new)" example \#2

From the previous page, we can enter the following into the editor

Scaling

C Meters $\subset$ Feet $\subset$ Inch $\subset$| Wave- |
| :--- |
| lenght |$\subset$ Custom Factor $\sqrt{1.0}$



## Example: 3ele Cubical Quad \#1

- Each element is a square with curved corners
- We approximate the curve with a 45 degree angle
- Driven element is about 1 wavelength long
- Reflector is a bit bigger, Director is a bit smaller
- Corner length: $\mathrm{CC}^{2}=\mathrm{C}^{2}+\mathrm{C}^{2}$ so $\mathrm{CC}=\operatorname{sqr}\left(2^{*} \mathrm{C}^{\wedge} 2\right)$
- If CL is the circumference
- Total of 4 sides $=C L-4 * C C$
- Half of one side is $\mathrm{CH}=\left(\mathrm{CL}-4^{*} \mathrm{CC}\right) / 8$



## Example: 3ele Cubical Quad \#2

SY S=1.05
SY V=0.99
SY C=0.02
SY CC=sqr(2*C^2)
SY CL1=V*299.792458/145.0 'Circumference Driven
SY CH1=(CL1-4*CC)/8 'Half side length
SY CL2=S*CL1 'Circumference Reflector
SY CH2=(CL2-4*CC)/8 'Half side length
SY CL3=CL1/S 'Circumference Director
SY CH3=(CL3-4*CC)/8 'Half side length


This gives the following entries for the driven element (at $Y=0$ )


## Example: 3ele Cubical Quad \#3

Uses Y offsets for the Director and reflector SY M=1.05 'Max boom length
SY L= -0.45 'Distance between Driven (at $Y=0$ ) and reflector SY D=M+L 'Distance between Driven (at $Y=0$ ) and director


## Analysing a 3ele Cubical Quad \#1

1: Launch 4nec2


2: Select - Open/select file ( cu-quad-3el-2m-fb.nec )


$$
\begin{aligned}
& \text { Open } 4 \text { nec } 2 \text { in/out file } \\
& \text { Save Output file as }
\end{aligned}
$$

3: Select - Calculate / NEC output-data

| 2. Main [V5.9.3] (F2) |  | - | $\square$ |  | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| File Edit Settings | Calculate | Window | Show | Run |  |
| Help | NEC | utput-data |  |  |  |
|  | L/Pi | Matching | F10 |  | 3 |
| Filename $\quad$ \\|cu-quad- |  | Optimizer | F12 |  |  |

4: Select "Frequency Sweep"
5. Set the "FR:" Start/Stop/Step values

6: Click "Generate"


## Analysing a 3ele Cubical Quad \#2

From the Sweep we get:

## (Gain/SWR/Impedance (F5)


:
(8) Smith Chart (F11)

Show View V/I Source Export Import


## Analysing a 3ele Cubical Quad \#3



## Optimizing a 3ele Cubical Quad \#1

## 1: Calculate/Start Optimizer

| 2. Main [V5.9.3] (F2) |  | - | $\square$ |  | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| File Edit Settings | Calculate | Window | Show | Run |  |
| Help | NEC output-data F7 <br> L/Pi/TMatching F10 |  |  |  |  |
|  |  |  |  |  | ? |
| Filename \|cu-quad- | Start | Optimizer | F12 |  |  |

2: Set SWR 60\%,Gain 35\%,F/B 5\%
3: Select variables: M \& L
4: Click "Start"
蹘 Optimizer and Evaluator (F12)


5: Click "Resume" a few times
6: Click "Update NEC-file"


## Optimizing a 3ele Cubical Quad \#2

1: Set SWR 100, Freq to 144.5
2: Select variables: S \& V
4: Click "Start"
5: Click "Resume" a few times
Optimizer and Evaluator (F12)


6: Click "Update NEC-file"
7: Calculate/Frequency Sweep


## Useful links:

- My simple design tutorial:
http://www.fareham.org/rw8-nec2-designing.shtml
- My example .NEC files (100+ so far):
http://www.fareham.org/rw7-4nec2.shtml
- 4NEC2 download link:
https://www.qsl.net/4nec2/
- NEC2 file command document:
https://www.nec2.org/other/nec2prt3.pdf
- NEC5 license link: (Lawrence Livermore National Laboratory)
https://ipo.llnl.gov/technologies/software/nec-v50-numerical-electromagnetic-code


## Questions?

## (+ Live Demo if we have time!)

